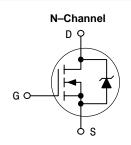
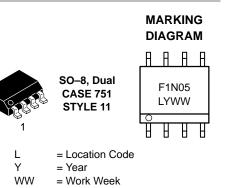
Power MOSFET 1 Amp, 50 Volts N-Channel SO-8, Dual

These miniature surface mount MOSFETs feature ultra low $R_{DS(on)}$ and true logic level performance. They are capable of withstanding high energy in the avalanche and commutation modes and the drain-to-source diode has a low reverse recovery time. MiniMOSTM devices are designed for use in low voltage, high speed switching applications where power efficiency is important. Typical applications are dc-dc converters, and power management in portable and battery powered products such as computers, printers, cellular and cordless phones. They can also be used for low voltage motor controls in mass storage products such as disk drives and tape drives. The avalanche energy is specified to eliminate the guesswork in designs where inductive loads are switched and offer additional safety margin against unexpected voltage transients.

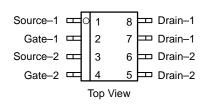
- Ultra Low R_{DS(on)} Provides Higher Efficiency and Extends Battery Life
- Logic Level Gate Drive Can Be Driven by Logic ICs
- Miniature SO-8 Surface Mount Package Saves Board Space
- Diode Is Characterized for Use In Bridge Circuits
- Diode Exhibits High Speed
- Avalanche Energy Specified
- Mounting Information for SO-8 Package Provided
- IDSS Specified at Elevated Temperature

Rating	Symbol	Value	Unit		
Drain-to-Source Voltage	V _{DS}	50	Volts		
Gate-to-Source Voltage - Continuous	VGS	±20	Volts		
Drain Current – Continuous – Pulsed	I _D I _{DM}	2.0 10	Amps		
Single Pulse Drain–to–Source Avalanche Energy – Starting T _J = 25°C (V _{DD} = 25 V, V _{GS} = 10 V, I _L = 2 Apk)	E _{AS}	300	mJ		
Operating and Storage Temperature Range	Т _Ј , Т _{stg}	–55 to 150	°C		
Total Power Dissipation @ T _A = 25°C	PD	2.0	Watts		
Thermal Resistance – Junction to Ambient (Note 1.)	$R_{\theta J A}$	62.5	°C/W		
Maximum Temperature for Soldering, Time in Solder Bath	т∟	260 10	°C Sec		


1. Mounted on 2" square FR4 board (1" sq. 2 oz. Cu 0.06" thick single sided) with one die operating, 10 sec. max.



ON Semiconductor"

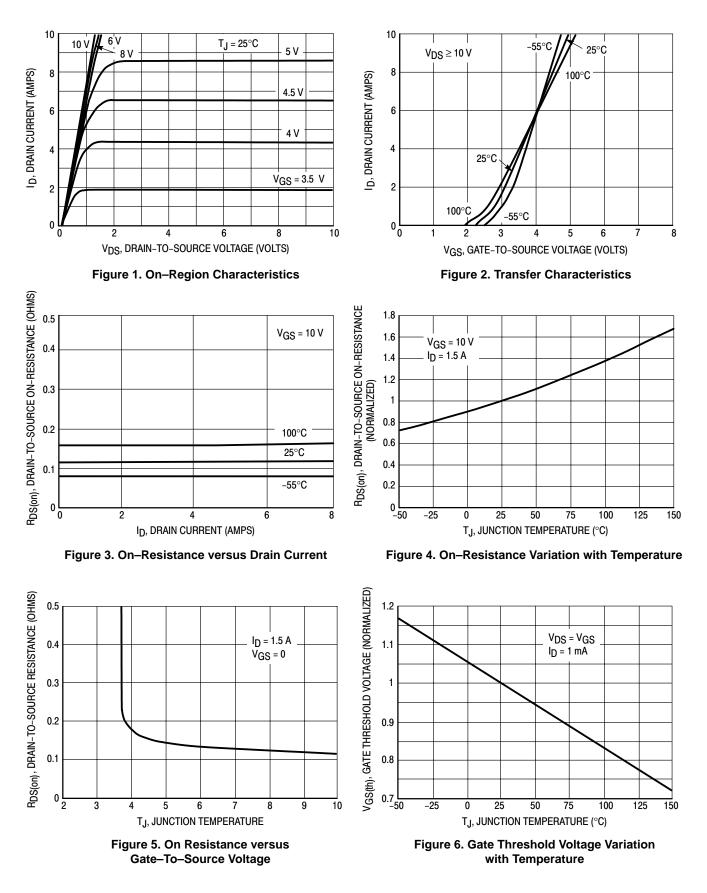

http://onsemi.com

1 AMPERE 50 VOLTS RDS(on) = 300 mΩ

PIN ASSIGNMENT

ORDERING INFORMATION

Device	Package	Shipping
MMDF1N05ER2	SO–8	2500 Tape & Reel


ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Cha	Symbol	Min	Тур	Мах	Unit	
OFF CHARACTERISTICS						
Drain-to-Source Breakdown Volt ($V_{GS} = 0, I_D = 250 \mu A$)	V _(BR) DSS	50	-	-	Vdc	
Zero Gate Voltage Drain Current ($V_{DS} = 50 V$, $V_{GS} = 0$)	IDSS	-	-	250	μAdc	
Gate–Body Leakage Current (V _{GS} = 20 Vdc, V _{DS} = 0)		IGSS	_	_	100	nAdc
ON CHARACTERISTICS (Note 2.)		1			I	
Gate Threshold Voltage ($V_{DS} = V_{GS}$, $I_D = 250 \mu Adc$)	VGS(th)	1.0	-	3.0	Vdc	
$\begin{array}{l} \mbox{Drain-to-Source On-Resistance} \\ (\mbox{V}_{GS} = 10 \mbox{ Vdc}, \mbox{ I}_{D} = 1.5 \mbox{ Adc}) \\ (\mbox{V}_{GS} = 4.5 \mbox{ Vdc}, \mbox{ I}_{D} = 0.6 \mbox{ Adc}) \end{array}$	R _{DS(on)} R _{DS(on)}	-		0.30 0.50	Ohms	
Forward Transconductance (VDS	9FS	-	1.5	-	mhos	
DYNAMIC CHARACTERISTICS						
Input Capacitance		C _{iss}	-	330	-	pF
Output Capacitance	(V _{DS} = 25 V, V _{GS} = 0, f = 1.0 MHz)	C _{OSS}	-	160	-	
Reverse Transfer Capacitance		C _{rss}	-	50	-	-
SWITCHING CHARACTERISTICS	(Note 3.)					
Turn-On Delay Time		t _{d(on)}	-	-	20	ns
Rise Time	(V _{DD} = 10 V, I _D = 1.5 A, R _L = 10 Ω,	tr	-	-	30	
Turn-Off Delay Time	$V_{G} = 10 \text{ V}, \text{ R}_{G} = 50 \Omega$	^t d(off)	-	-	40	
Fall Time		t _f	-	-	25	1
Total Gate Charge		Qg	-	12.5	-	nC
Gate-Source Charge	(V _{DS} = 10 V, I _D = 1.5 A, V _{GS} = 10 V)	Qgs	-	1.9	_	
Gate-Drain Charge		Q _{gd}	-	3.0	-	
SOURCE-DRAIN DIODE CHARA	CTERISTICS (T _C = 25°C)					
Forward Voltage (Note 2.)	(I _S = 1.5 A, V _{GS} = 0 V)	V _{SD}	-	-	1.6	V
Reverse Recovery Time	(dl _S /dt = 100 A/µs)	t _{rr}	-	45	_	ns

2. Pulse Test: Pulse Width \leq 300 µs, Duty Cycle \leq 2.0%.

3. Switching characteristics are independent of operating junction temperature.

TYPICAL ELECTRICAL CHARACTERISTICS

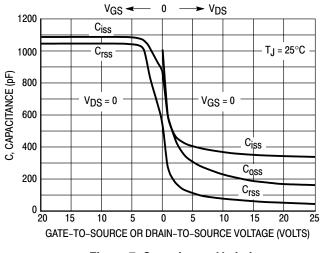


Figure 7. Capacitance Variation

SAFE OPERATING AREA INFORMATION

Forward Biased Safe Operating Area

The FBSOA curves define the maximum drain-to-source voltage and drain current that a device can safely handle when it is forward biased, or when it is on, or being turned on. Because these curves include the limitations of simultaneous high voltage and high current, up to the rating of the device, they are especially useful to designers of linear systems. The curves are based on a case temperature of 25°C and a maximum junction temperature of 150°C. Limitations for repetitive pulses at various case temperatures can be determined by using the thermal response curves. ON Semiconductor Application Note, AN569, "Transient Thermal Resistance – General Data and Its Use" provides detailed instructions.

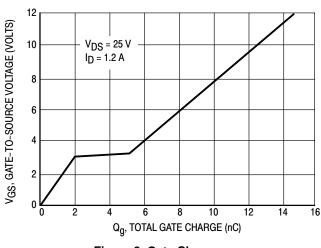


Figure 8. Gate Charge versus Gate–To–Source Voltage

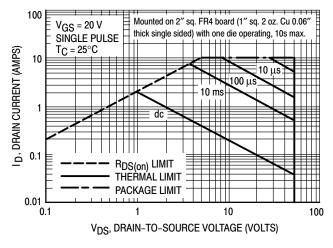


Figure 9. Maximum Rated Forward Biased Safe Operating Area

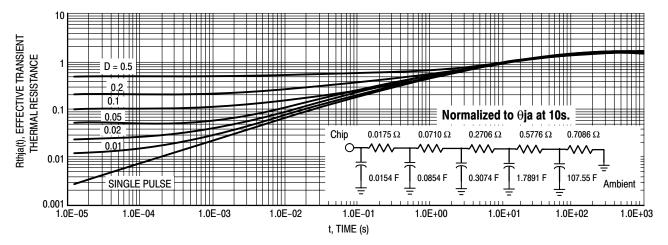
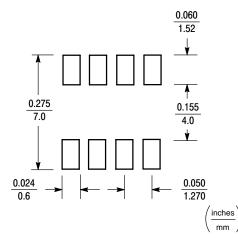



Figure 10. Thermal Response

INFORMATION FOR USING THE SO-8 SURFACE MOUNT PACKAGE

MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS

Surface mount board layout is a critical portion of the total design. The footprint for the semiconductor packages must be the correct size to insure proper solder connection interface between the board and the package. With the correct pad geometry, the packages will self-align when subjected to a solder reflow process.

SO-8 POWER DISSIPATION

The power dissipation of the SO-8 is a function of the input pad size. These can vary from the minimum pad size for soldering to the pad size given for maximum power dissipation. Power dissipation for a surface mount device is determined by $T_{J(max)}$, the maximum rated junction temperature of the die, RAJA, the thermal resistance from the device junction to ambient; and the operating temperature, TA. Using the values provided on the data sheet for the SO-8 package, PD can be calculated as follows:

$$P_{D} = \frac{T_{J(max)} - T_{A}}{R_{\theta}JA}$$

The values for the equation are found in the maximum ratings table on the data sheet. Substituting these values

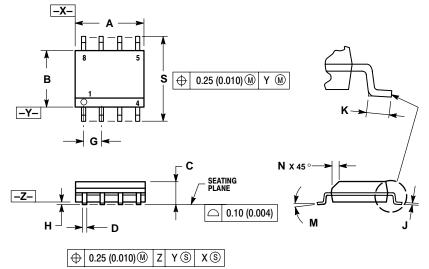
SOLDERING PRECAUTIONS

The melting temperature of solder is higher than the rated temperature of the device. When the entire device is heated to a high temperature, failure to complete soldering within a short time could result in device failure. Therefore, the following items should always be observed in order to minimize the thermal stress to which the devices are subjected.

- Always preheat the device.
- The delta temperature between the preheat and soldering should be 100°C or less.*
- When preheating and soldering, the temperature of the leads and the case must not exceed the maximum temperature ratings as shown on the data sheet. When using infrared heating with the reflow soldering method, the difference shall be a maximum of 10°C.

into the equation for an ambient temperature TA of 25°C, one can calculate the power dissipation of the device which in this case is 2.0 Watts.

$$P_D = \frac{150^{\circ}C - 25^{\circ}C}{62.5^{\circ}C/W} = 2.0 \text{ Watts}$$


The 62.5°C/W for the SO-8 package assumes the recommended footprint on a glass epoxy printed circuit board to achieve a power dissipation of 2.0 Watts using the footprint shown. Another alternative would be to use a ceramic substrate or an aluminum core board such as Thermal Clad[™]. Using board material such as Thermal Clad, the power dissipation can be doubled using the same footprint.

- The soldering temperature and time shall not exceed 260°C for more than 10 seconds.
- When shifting from preheating to soldering, the maximum temperature gradient shall be 5°C or less.
- After soldering has been completed, the device should be allowed to cool naturally for at least three minutes. Gradual cooling should be used as the use of forced cooling will increase the temperature gradient and result in latent failure due to mechanical stress.
- Mechanical stress or shock should not be applied during cooling

* Soldering a device without preheating can cause excessive thermal shock and stress which can result in damage to the device.

PACKAGE DIMENSIONS

SO-8 CASE 751-07 **ISSUE V**

- NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.

PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIMETERS		INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	4.80	5.00	0.189	0.197	
В	3.80	4.00	0.150	0.157	
С	1.35	1.75	0.053	0.069	
D	0.33	0.51	0.013	0.020	
G	1.27 BSC		0.050 BSC		
н	0.10	0.25	0.004 0.01		
J	0.19	0.25	0.007	0.010	
K	0.40	1.27	0.016	0.050	
Μ	0 °	8 °	0 °	8 °	
Ν	0.25	0.50	0.010	0.020	
s	5.80	6.20	0.228	0.244	

AAAA XXXXXX

ALYW

Ĥ Н Η Н STYLE 11: PIN 1. SOURCE 1 2. GATE 1 3. SOURCE 2 SOURCE
GATE 2
DRAIN 2
DRAIN 2
DRAIN 1
DRAIN 1 8. DRAIN 1

<u>Notes</u>

MiniMOS is a trademark of Semiconductor Components Industries, LLC (SCILLC). Thermal Clad is a registered trademark of the Bergquist Company.

ON Semiconductor and without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

NORTH AMERICA Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: ONlit@hibbertco.com Fax Response Line: 303–675–2167 or 800–344–3810 Toll Free USA/Canada

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor – European Support

- German Phone: (+1) 303–308–7140 (Mon–Fri 2:30pm to 7:00pm CET) Email: ONlit–german@hibbertco.com French Phone: (+1) 303–308–7141 (Mon–Fri 2:00pm to 7:00pm CET)
- French Phone: (+1) 303–308–7141 (Mon–Fri 2:00pm to 7:00pm CET) Email: ONlit-french@hibbertco.com
- English Phone: (+1) 303–308–7142 (Mon–Fri 12:00pm to 5:00pm GMT) Email: ONlit@hibbertco.com

EUROPEAN TOLL-FREE ACCESS*: 00-800-4422-3781 *Available from Germany, France, Italy, UK, Ireland

CENTRAL/SOUTH AMERICA:

Spanish Phone: 303–308–7143 (Mon–Fri 8:00am to 5:00pm MST) Email: ONlit–spanish@hibbertco.com Toll–Free from Mexico: Dial 01–800–288–2872 for Access –

then Dial 866–297–9322

ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time) Toll Free from Hong Kong & Singapore: 001–800–4422–3781 Email: ONlit–asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031 Phone: 81–3–5740–2700 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.